Utilizing Humidity and Temperature Data to Advance Monitoring and Prediction of Meteorological Drought
نویسندگان
چکیده
The fraction of land area over the Continental United States experiencing extreme hot and dry conditions has been increasing over the past several decades, consistent with expectation from anthropogenic climate change. A clear concurrent change in precipitation, however, has not been confirmed. Vapor pressure deficit (VPD), combining temperature and humidity, is utilized here as an indicator of the background atmospheric conditions associated with meteorological drought. Furthermore, atmospheric conditions associated with warm season drought events are assessed by partitioning associated VPD anomalies into the temperature and humidity components. This approach suggests that the concurrence of anomalously high temperature and low humidity was an important driver of the rapid development and evolution of the exceptionally severe 2011 Texas and the 2012 Great Plains droughts. By classification of a decade of extreme drought events and tracking them back in time, it was found that near surface atmospheric temperature and humidity add essential information to the commonly used precipitation-based drought indicators and can advance efforts to determine the timing of drought onset and its severity.
منابع مشابه
Assessment of Severity of Droughts Using Geostatistics Method(Case Study: Southern Iran)
Drought monitoring is a fundamental component of drought risk management. It is normally performed usingvarious drought indices that are effectively continuous functions of rainfall and other hydrometeorological variables.In many instances, drought indices are used for monitoring purposes. Geostatistical methods allow the interpolationof spatially referenced data and the prediction of values fo...
متن کاملApplication of artificial neural networks on drought prediction in Yazd (Central Iran)
In recent decades artificial neural networks (ANNs) have shown great ability in modeling and forecasting non-linear and non-stationary time series and in most of the cases especially in prediction of phenomena have showed very good performance. This paper presents the application of artificial neural networks to predict drought in Yazd meteorological station. In this research, different archite...
متن کاملMonitoring of dust phenomenon and Investigate its correlation with temperature and humidity parameters (Case study: Khuzestan Province)
Dust is a phenomenon in arid and semi-arid areas due to high wind speeds on the un-polluted soil surface and prone to erosion. The occurrence of dust has always been a problem for residents in the western and southwestern regions of the country, has gradually spread to other provinces, including the capital. The study area is southwest of Iran, Khuzestan province. The latitude and longitude of ...
متن کاملبررسی تأثیر عناصر اقلیمی بر افزایش دقت روش شبکه عصبی مصنوعی در پیشبینی خشکسالی منطقه یزد
Drought is a natural feature of the climate condition, and its recurrence is inevitable. The main purpose of this research is to evaluate the effects of climatic factors on prediction of drought in different areas of Yazd based on artificial neural networks technique. In most of the meteorological stations located in Yazd area, precipitation is the only measured factor while generally in synopt...
متن کاملEvaluation of remote sensing indicators in drought monitoring using machine learning algorithms (Case study: Marivan city)
Remote sensing indices are used to analyze the Spatio-temporal distribution of drought conditions and to identify the severity of drought. This study, using various drought indices generated from Madis and TRMM satellite data extracted from Google Earth Engine (GEE) platform. Drought conditions in Marivan city from February to November for the years 2001 to 2017 were analyzed based on spatial a...
متن کامل